Continuity of the spectrum and spectral radius

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity Properties of the Lower Spectral Radius

The lower spectral radius, or joint spectral subradius, of a set of real d× d matrices is defined to be the smallest possible exponential growth rate of long products of matrices drawn from that set. The lower spectral radius arises naturally in connection with a number of topics including combinatorics on words, the stability of linear inclusions in control theory, and the study of random Cant...

متن کامل

Continuity of the Joint Spectral Radius: Application to Wavelets

Abstract. The joint spectral radius is the extension to two or more matrices of the (ordinary) spectral radius ρ(A) = max |λi(A)| = lim‖A m‖1/m. The extension allows matrix products Πm taken in all orders, so that norms and eigenvalues are difficult to estimate. We show that the limiting process does yield a continuous function of the original matrices—this is their joint spectral radius. Then ...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On spectral radius of strongly connected digraphs

 It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.  

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1981

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1981-0614889-2